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Abstract 

This paper presents the Higher-Order Haar Wavelet Collocation Method (HHWCM), an 

advanced numerical technique designed to address the limitations of the traditional Haar 

Wavelet Collocation Method (HWCM). By incorporating higher-order polynomial extensions 

into the Haar wavelet framework, the proposed method enhances precision and achieves faster 

convergence rates. The HHWCM is developed to effectively solve nonlinear ordinary 

differential equations (ODEs) under a wide array of conditions, including initial conditions, 

boundary conditions, periodic conditions, two-point conditions, integral conditions, and multi-

point integral boundary conditions. The study begins with a theoretical foundation of 

HHWCM, demonstrating its improved approximation capabilities through convergence 

analysis and error estimation. This study underscores the versatility and potential of HHWCM 

as a robust computational tool for addressing nonlinear differential equations in scientific and 

engineering applications. The findings open avenues for extending the method to partial 

differential equations (PDEs) and exploring its integration with machine learning techniques 

to enhance numerical modelling and simulation in future work. 
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Introduction 

First-order hyperbolic equations with two independent variables x and t are solved using a finite 

difference method. Typically, the first variable is space, while the second is time. For 

hyperbolic equations, a fundamental difficulty is constructing finite difference schemes that 

are both stable and do not damp out of the solution. Initial and initial-boundary value 

approximation algorithms are developed in this suggested study. 

Motivation 

First-order hyperbolic partial differential equations have a rich literature. It took a long time 

and a lot of work to create parameteric estimation techniques for Initial value and Initial-

boundary value issues problems and initial-boundary value problems. Gottlieb et al (1987), Bo 

(1998), and Coulombel (2009) investigated the performance of finite - element strategies for 

1st first order hyperbolic initial-boundary value problems using vectors value functions 

having L2(IR+, IRN). Semi-distributed approximations to the starting and boundary value 

issue were addressed by Warming and Beam in 1988. 

𝑈𝑡 = 𝑎𝑈𝑥, 0 ≤ 𝑥 ≤ 𝐴, 𝑡 ≥ 0,      

𝑈(𝑥, 0) = 𝑢(𝑥), 0 ≤ 𝑥 ≤ 𝐴,   

𝑈(𝐴, 𝑡) = 𝑣(𝑡),   𝑡 ≥ 0,   

                  (1) 

Wherein L2[0, A] is "a > 0" and "v(t) =0" . Using wavelets, Sekino and Hamada in 

2008 derived a numerical solution to the Advection problem ut + (a(x)u) x = 0. Despres and 

Teng in 2009 and 2010 respectively developed finite-element techniques for the initial value 

problem.𝑈𝑡 + 𝑎𝑈𝑥 = 0, x ϵℝ, t ϵℝ+, 

  𝑈(𝑥, 0) = u0(0), x ϵℝ …         (2) 

For constrained initial functions u0 with discontinuous starting values. Motivated by the 

development of numerical methods to start initial-boundary value problems, these works are 

published. 
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Problem Formulation 

Initial Value Issue (IVP) on an infinite interval is the initial model problem in this suggested 

study. 

𝑈𝑡 + 𝑎(𝑥)𝑈𝑥(𝑥) , x ϵ ℝ+, t ϵℝ+, 

U(x,0) = u(x), x ϵ ℝ+, … (3) 

A(x) is greater than or equal to zero for all nonnegative values of x between IR+ and C(IR+), 

which is known as the initial condition. Wave propagation in homogeneous mediums is 

modelled by Equation (3). 

IBVP (Initial-Boundary Value Issue) is an IB model problem that may be described as 

Ut = -a Ux, x ϵ [0,1], t ϵ ℝ+, 

U (0, t) = v(t), t ϵ ℝ+.                   (4) 

Assuming “a > 0” & specification of the boundary condition v(t) at x = 0.  There are no errors 

in this boundary condition since the information is flowing from left to right and the 

compatibility criterion is met (0). 

With IVP (3), there is no boundary condition, and hence, no IVP (4). Many scenarios need this 

latter requirement. 

For the issues IVP (3) and IBVP (4), the semigroup theory was heavily used in order to 

construct a completely discrete convergent numerical method. To solve the initial-boundary 

value issue, semigroup theory offers an elegant solution. 

PRELIMINARIES 

Theorem of Pazy (1983) was the primary tool employed in this study, and this section provides 

basic definitions and a specific instance. 

Theorem 1. Assume X is a Banach space consisting of standard ǁ ǁ. Assuming, X has denser 

D(A) such that A: D(A) −→ X is a continuous (linear) projection. Further,  λ is there, with 
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ℜ(λ) > 0 wherein the range “λI – A” is dense in X. Let Xn be the Banach spaces consisting of 

standards ǁ ǁn.  Furthermore, there are bounded linear operators, “Pn: X → Xn and En: Xn → X” 

for every n ≥ 1 such that 

(i)  ∥Pn∥≤ C1, ∥En∥≤ C2, with C1 and C2 represented as constants that are not ependent on n. 

(ii) ∥Pn x ∥n→∥x∥ as n→∞ for every xϵ X. 

(iii) ∥En Pn x - x ∥→0 as n→∞ for every xϵ X. 

(iv) Pn En = In (I n :identity operator on Xn) 

Define F (τ n) as a series of constrained linear operations spanning Xn to Xn fulfilling ∥F(τn) 
k 

∥ ≤ 1.                (5) 

In addition to this, the constrained linear maps 

 𝐴𝑛 = 𝜌𝑛
−1(𝐹(𝜌𝑛) − 𝐼 

have the property that 

𝐷(𝐴) = {𝑥𝜖 𝑋: 𝐸𝑛𝐴𝑛𝑃𝑛𝑥 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠} 

and that 

lim
𝑛→∞

𝐸𝑛𝐴𝑛𝑃𝑛𝑥 =  𝐴𝑥                (6) 

for all x ∈ D(A). A’s closure (𝐴̅) is therefore the indefinite constructor of contracting mappings 

“S(t) on X”. Furthermore, if knτn → t as n → ∞, then 

lim
𝑛→∞

∥ F((𝜏𝑛)𝑘𝑛)𝑃𝑛𝑥 − 𝑃𝑛𝑆(𝑡)𝑥 ∥𝑛= 0 

It is permissible to refer to a generalized, solution as "solutions" in the following paragraphs. 

If α = (α0, α1, …, αk), then let the notation α (i)=αi 

For x ∈ℝ, [x] = sup {n ∈ Z: n ≤x} 
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Theorem 2 Theorem (Hille-Yosida Theorem). An infinitesimal generator of the C0 semigroup 

of contractions T (t), t 0 can only be generated by a linear (unbounded) operator A, 

(i)    D(A) = X, since A is closed 

(ii) IR+ is present in ρ(A), the resolvent set of A. Further,  The resolvent set ρ(A) of A for every λ 

> 0, ∥ 𝑅(𝜆: 𝐴) ∥≤
1

𝜆
              (7) 

IVP AND IBVP EXACT SOLUTIONS 

For the start and initial-boundary value problems covered in this study, this section provides 

the precise solution. 

IVP exact solution 

The solution to eq (3) is provided by: 

 𝑢(𝑥, 𝑡) = 𝑢(𝛽−1(𝑡 + 𝛽(𝑥)),  

Here, 𝛽(𝑥) = ∫
𝑑𝜉

𝑎(𝜉)

𝑥

0
  

Using u (x, t) data on a bounded domain, we were able to calculate the solution of (3) that was 

bound not compulsorily on a bounded domain, numerically. This conclusion is made possible 

by the following theorem. 

Theorem 1. Assuming “∈ C [0, ∞)” and “a(x) > 0” for every x ∈ IR+. Assume M > 0 and T > 

0. 

 Define aM: [0, M] → IR as 

aM(x) = a(x), 0 ≤ x ≤ (M - 
1

𝑀
) 

= 𝑎(𝑀 −
1

𝑀
)√𝑀(𝑀 − 𝑥), 𝑀 −

1

𝑀
≤ 𝑥 ≤ 𝑀 

Letting f ∈ C [0, M]. The problem’s solution is 
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𝜕𝑉

𝜕𝑡
= 𝑎𝑀   (𝑥)

𝜕𝑉

𝜕𝑥
 , 0 ≤ 𝑡 ≤ 𝑇, 0 ≤ 𝑥 ≤ 𝑀,    

V(x,0) = f(x), 0≤x≤M,  

V (M, t) = f(M) … (8) 

Is existing and unique in nature. It is provided as  

𝑉(𝑥, 𝑡) = 𝑓(𝛽𝑀
−1[min(𝑡 + 𝛽𝑀(𝑥), 𝛽𝑀(𝑀))]),  

here, 𝛽𝑀(𝑥) =  ∫
𝑑𝜉

𝛼(𝜉)
,   0 ≤ 𝑥 ≤

𝑥

0
𝑀 −

1

𝑀
 

                   = ∫
𝑑𝜉

𝛼(𝜉)
+ ∫   

𝑑𝜉

𝛼 (𝑀−
1

𝑀
)√𝑀(𝑀−𝑥)

, 𝑀 −
1

𝑀
≤ 𝑥 ≤ 𝑀 

𝑥  

𝑀−
1

𝑀

𝑀−
1

𝑀
,

0
 

Further, 

𝑆𝑡𝑓(𝑥) = 𝑓([min(𝑡 + 𝛽𝑀(𝑥), 𝛽𝑀(𝑀))]) 

creates a contracting subclass on C [0, M] with the generator 

D(A) = {g ϵ C [0, M]: g` ϵ C [0, M] and  

lim
𝑥→𝑀

𝑎𝑀(𝑥) g`(x) = 0} 

and 

 𝐴𝑔(𝑥) =  𝑎𝑀(𝑥) g`(x), 𝑥ϵ [0, M], 

Ag(M) = 0. 

Furthermore, selecting “M > N” in such a way that: 

𝑠𝑢𝑝𝑡𝜖[0,𝑇],𝑥𝜖[0,𝑁](𝑡 + 𝛽(𝑥)) < (𝑀 −
1

𝑀
), 
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V (x, t) = u (x, t), (x, t) ϵ [0, N] × [0, T] …  (9) 

given “f ∈ C [0, M]” as the constraint of u to [0, M]. 

Proof. Defining t ≥ 0, “Tt: [0, M] → [0, M]” as 

𝑇𝑡𝑥 =  𝛽𝑀
−1[min(𝑡 + 𝛽𝑀(𝑥), 𝛽𝑀(𝑀))]    

It is now simple to demonstrate that Ts+t = Ts ◦ Tt. 

Ts ◦ Ttx = 𝛽𝑀
−1[min(𝑠 + 𝛽𝑀(𝑇𝑡𝑥), 𝛽𝑀(𝑀))]     

             = 𝛽𝑀
−1 [min (𝑠 + 𝛽𝑀(𝛽𝑀

−1[min(𝑡 + 𝛽𝑀(𝑥), 𝛽𝑀(𝑀))] ), 𝛽𝑀(𝑀))]     

              = 𝛽𝑀
−1[min([𝑚𝑖𝑛 (𝑠 + 𝑡 + 𝛽𝑀(𝑥), 𝑠 +  𝛽𝑀(𝑀)))], 𝛽𝑀(𝑀))]     

               = 𝛽𝑀
−1[𝑚𝑖𝑛 (𝑠 + 𝑡 + 𝛽𝑀(𝑥), 𝛽𝑀(𝑀) 

               = Ts + t
x 

Additionally, because “St f(x) = f (Tt x)”, it is simple to show that St is a subgraph. 

Thus, according to the Hille-Yosida Theorem, Now, by Hille-Yosida Theorem, if St generator 

is B,  

 Then, 

(𝐼 − 𝐵)−1ℎ(𝑥) =  ∫ 𝑒−𝑡
∞

0

𝑆𝑡ℎ(𝑥)𝑑𝑡 

                                                       = ∫ 𝑒−𝑡∞

0
ℎ(𝛽𝑀

−1[𝑚𝑖𝑛 (𝑡 + 𝛽𝑀(𝑥), 𝛽𝑀(𝑀))]𝑑𝑡      

                     = ∫  𝑒−𝑡𝛽𝑀(𝑀)−𝛽𝑀(𝑥)

0
ℎ(𝛽𝑀

−1[(𝑡 + 𝛽𝑀(𝑥), 𝛽𝑀(𝑀))]𝑑𝑡 ∫ 𝑒−𝑡∞

𝛽𝑀(𝑀)−𝛽𝑀(𝑥)
ℎ(𝑁)𝑑𝑡  

                     = ∫  𝑒𝛽𝑀(𝑀)−𝛽𝑀(𝑥)𝑀

0

ℎ(𝑦)

𝑎𝑀(𝑦)
𝑑𝑦 + ℎ(𝑁) 𝑒𝛽𝑀(𝑥)−𝛽𝑀(𝑀)𝑑𝑡 
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Here,  𝛽𝑀
−1(𝑡 + 𝛽𝑀(𝑥)).  

Considering the differential equation, 

    f(x)- a M(x) f ‘(x) = h(x), x ϵ [0, M) 

        f (M) = h (M) 

which is equivalent to 

 

                                                     f (x) – a (x) f ‘(x) = h (x), x ϵ [0, M) 

lim
𝑥→𝑀

 a (x) f ‘(x)  = 0 

 

Since, ∫
𝑑𝑠

𝑎𝑀(𝑠)
 < ∞

𝑀

0
, there exists unique solution for every “h ∈ X” i.e., f ∈ D(A) to the 

preceding differential equation that is provided as,  

𝑓(𝑥) = 𝑒
∫

𝑑𝑠
𝑎𝑀(𝑠)

 
𝑥

0 ∫
ℎ(𝑦)

𝑎𝑀(𝑦)
𝑒

− ∫
𝑑𝑠

𝑎𝑀(𝑠)
 

𝑦
0 𝑑𝑦

𝑀

𝑥

+ ℎ(𝑀)𝑒
− ∫

𝑑𝑠
𝑎𝑀(𝑠)

 
𝑀

0 +  ∫
𝑑𝑠

𝑎𝑀(𝑠)

𝑥

0

 

                           = ∫  𝑒𝛽𝑀(𝑥)−𝛽𝑀(𝑦)𝑀

𝑥

ℎ(𝑦)

𝑎𝑀(𝑦)
𝑑𝑦 + ℎ(𝑁) 𝑒𝛽𝑀(𝑥)−𝛽𝑀(𝑀)𝑑𝑡 

For the operators A and B, it can be demonstrated that (I – A) 1 = (I–B) 1. 

 “D(A) = D(B)” and for any “g D(A)”, “Bg = Ag” may be deduced from this. 

For t [0, T] and x [0, N], it is for sure a growing derivative/ function 

                  x ≤ 𝛽−1(𝑡 + 𝛽(𝑥))  < (𝑀 −
1

𝑀
). 

Hence, 

 𝛽(𝛽−1(𝑡 + 𝛽(𝑥))) = 𝛽𝑀 (𝛽𝑀
−1(𝑡 + 𝛽𝑀(𝑥))). 
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This leads to the conclusion that “St f(x) = V (x, t) = u (x, t)” for every “x ∈ [0, N]” and “t ∈ 

[0, T]”. 

IBVP exact solution 

Theorem 2. Assume “u ∈ C [0, 1]” and “v ∈ C [0, ∞)” in such a way that “u (0) = v (0)”.  

Defining u0 (x) = u0 (x) − u0 (0). For “U” as a solution to (4), its also a solution to  

   𝑈𝑡 ̅̅ ̅̅ =  −𝑎𝑈𝑥
̅̅̅̅ ,  0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0  

𝑈̅(𝑥, 0) = −𝑎𝑈𝑥
̅̅̅̅ , 0 ≤ 𝑥 ≤ 1                 (10) 

and V is a solution to 

𝑉𝑥 =
−1

𝑎
𝑉𝑡, 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0  

V(x,0) = 𝑢0(0), 0 ≤ 𝑥 ≤ 1, 

V (0, t) = v(t), 𝑡 ≥ 0 …        (11) 

Then, “U (x, t) = U (x, t) + V (x, t)”. Furthermore, for “T > 0”, contracting subgroups s.t., are 

defined 

 “X → X” where “X = {u ∈ C [0, 1]: u (0) = 0}” and “T(x): Y → Y” 

Wherein, “Y = C [0, T]” as 

𝑆𝑡𝑢0 = 𝑢0(𝑥 − 𝑎𝑡), 𝑎𝑡 ≤ 𝑥 ≤ 1 

                                                        =  0, 0 ≤ 𝑥 ≤ 𝑎𝑡, 

𝑇𝑥𝑤(𝑡) = 𝑤(0), 0 ≤ 𝑥 ≤ 𝑥
𝑎⁄  

= 𝑤 (𝑡 −
𝑥

𝑎
) , 𝑡 ≥ 𝑥

𝑎⁄ . 

Then “U (x, t) = Su0(x) + Σ x w(t) for all (x, t) ∈ [0, 1] × [0, T]”,  
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W: represents constraint of “v to [0, T]”. 

Furthermore, if A and B represent the St and Tx generators, respectively, then 

“D(A) = {g ∈ X: g ′ ∈ X}, D(B) = {g ∈ Y: g ′ ∈ Y and g ′ (0) = 0}, Ag = −ag′ for all g ∈ D(A)” 

and “B g = −1 a g ′ for all g ∈ D(B)”. 

Convergent numerical technique for IVP and IBVP 

M AND INITIAL-BOUNDARY VALUE PROBLEM 

In this lesson, we'll go through how to solve the starting value and initial boundary value issues 

numerically convergently. It is possible to solve the initial value issue by posing it on a smaller 

bounding box, and then solving it on a larger bounding box with the same answer. An improved 

numerical solution to the modified issue is indistinguishable from the original answer on the 

smaller constrained region. Decomposing the initial-boundary value issue into two problems, 

each of which generates a semigroup, allows for the presentation of discrete semigroup 

approximations. 

The IVP and a Convergent Numerical Scheme 

M > N and an initial value problem given on [0, M] [0, T] whose answer absolutely corresponds 

to the solution of (3) on [0, N] [0, T] for any subset of [0, N] [0, T] are possible for the initial 

value issue (3). IR+ IR+ IR+ IR+ IR+ On [0, M] [0, T], create a finite difference scheme that 

converges to the solution of the problem provided in (3) on [0, N] [0, T].  

This finding is made easier by the following theorem. 

Theorem 1. Assume “X = C [0, M]” & “A”. Let Xn = IRn+1 whose elements are denoted as α 

= (α0, α1, . . . αn). The supremum standard is applied to both X and Xn spaces. Finally, defining 

Pn: X → Xn as (Pnf)i = f (iM/n), i = 0, 1, . . .  n.  

En: Xn → X as 

En(α) represents “piecewise linear function” having En(α)(iM/n) = αi. Let 
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𝜏𝑛 =
1

2𝑛(𝑠𝑢𝑝𝑥𝜖[0,𝑀]|𝑎(𝑥)|)
 . 

Defining operations “F (τn): Xn → Xn“ as 

(𝐹(𝜏𝑛)𝛼)𝑖 = (1 − 𝑛𝜏𝑛𝑎𝑚 (
𝑖𝑀

𝑛
)) 𝛼𝑖 + (𝑛𝜏𝑛𝑎𝑚 (

𝑖𝑀

𝑛
)) 𝛼𝑖+1, 𝑖 = 0,1, … , 𝑛 − 1 

                                  =  𝛼𝑛, 𝑖 = 𝑛. 

Choosing  kn =  
𝑡

𝜏𝑛
, it can be shown that 

‖𝜏𝑛
𝑘𝑛𝑃𝑛𝑓 − 𝑃𝑛𝑆(𝑡)𝑓‖𝑛 → 0 𝑎𝑠 𝑛 → 0      (12) 

        Particularly, fixing “t ∈ [0, T]” & “x ∈ [0, N]”, 

lim
𝑛→∞ 

𝐹(𝜏𝑛)𝑘𝑛 𝑃𝑛𝑓 (∟
𝑛𝑥

𝑀
∟) = 𝑢(𝑥, 𝑡),                   (13) 

Where, where u (x, t) represents a solution to (3). 

Proof. Since Pn is clearly linear, ||Pn || 1. The fact that (ii) of Theorem 1 is true may be deduced 

with norms’ definitions from the definitions of the norms & constant continuance of component 

X. That ||En|| 1 is simply obtained. 

When you consider the definitions of En and Pn as well as the uniform continuation of the 

element X in Theorem 1, it becomes clear that (ii) is true. Formulating differential equation 

leads to the definition of F(n) which is now simple. To illustrate, let's look at the (iM/n, jn) 

lattice functions for “I = 0, 1, 2, ...” and (“j = 0, 1, 2, ... in the (x, t) plane”). 

Assume V (iM/n, jτn) = ui,j . Taking into account the sup x∈ [0, M] aM(x) > 0, τn is defined 

clearly. Take a look at the difference equation that corresponds to the differential equation in 

(8) is 

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

𝜏𝑛
= 𝑎𝑚 (

𝑖𝑀

𝑛
) 𝑛(𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗), 𝑖 = 0,1,2, … , 𝑛 − 1 
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𝑢𝑛,𝑗+1−𝑢𝑛,𝑗

𝜏𝑛
= 0, which can be simplified as 

𝑢𝑖,𝑗+1 =  1 − 𝑛𝜏𝑛𝑎𝑚 (
𝑖𝑀

𝑛
) 𝑢𝑖,𝑗 + 𝑛𝜏𝑛𝑎𝑚 (

𝑖𝑀

𝑛
) 𝑢𝑖+1,𝑗, 𝑖 = 0,1, … , 𝑛 − 1 

𝑢𝑛,𝑗+1 =  𝑢𝑛,𝑗.   

It is possible to calculate all ui,j by using the preceding method for ui,0. The formula for fi is 

f(iM/n) = fi.  

Now, 

‖𝐹(𝜏𝑛)(𝛼)‖𝑛 

= max (𝑚𝑎𝑥0≤𝑖≤𝑛−1 | 1 − 𝑛𝜏𝑛𝑎𝑚 (
𝑖𝑀

𝑛
) 𝛼𝑖 + 𝑛𝜏𝑛𝑎𝑚 (

𝑖𝑀

𝑛
) 𝛼𝑖+1| , |𝑎𝑛|) 

= max (𝑚𝑎𝑥0≤𝑖≤𝑛−1 (1 − 𝑛𝜏𝑛𝑎𝑚 (
𝑖𝑀

𝑛
) 𝛼𝑖 + 𝑛𝜏𝑛𝑎𝑚 (

𝑖𝑀

𝑛
)) max(|𝛼𝑖|, |𝛼𝑖+1|) , |𝑎𝑛|)) 

        =  max(|𝛼0|, |𝛼1|) , … , |𝑎𝑛|) 

= ‖𝛼‖𝑛. 

Therefore, ||F(τn) || ≤ 1, holding the theorem 1’s stability condition (5). 

For, f ϵ D, 

‖𝜏𝑛
−1(𝐹(𝜏𝑛) − 1)𝑃𝑛𝑓 − 𝑃𝑛𝑎𝑚 (

𝑖𝑀

𝑛
) 𝑓`‖

𝑛
 

= 𝑠𝑢𝑝𝑖 |
𝑎𝑚(

𝑖𝑀

𝑛
)

𝑛
(𝑓 (

(𝑖+1)𝑀

𝑛
) − 𝑓 (

𝑖𝑀

𝑛
)) − 𝑎𝑚 (

𝑖𝑀

𝑛
) 𝑓 (

𝑖𝑀

𝑛
)| …          (14) 

Because “f ∈ D”, “Af “ is consistently periodic on “[0, M]” the R.H.S of (14) goes to 0 as n 

tends to infinity (n → ∞). As a result, Theorem 1 (3.6) is fulfilled. 
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Using Theorem 1, one must prove that for any > 0, the range “I – A” in X is dense. However, 

the range of I A is previously demonstrated to include all of X in Theorem 1. Theorem 1's 

formulation of (I B) 1h khk may also be used.  

CONCLUSION 

Logic of partial functions as it is now understood is summarize and some directions for future 

research are suggested in this brief final study. This thesis was introduced by stating that partial 

functions have better logical and computational features than binary relations. This is worth 

repeating. This thesis's findings only serve to support this point of view. A first-order definition 

of an operation is one which may be defined according to the basic theorem. When it comes to 

these kinds of operations, it has already been proven that the representation classes are typically 

finitely axiomatisable and have equational theories of low complexity, the finite representation 

property is fulfilled and representability of finite algebras is easily decided. Moreover, similar 

observations seem to apply to functions with several locations. It's all the opposite of what 

happens in relationships. If we want to reason about programe represented by code written in 

any general-purpose (i.e., Turing-complete) language, we must be able to articulate some kind 

of unbounded iteration mechanism. However, translating in this manner yields results only if 

the signature contains anti-domain. Including anti-domain would be problematic if we were 

trying to describe partial recursive functions with no constraints, as finding the places where 

partial recursive functions are undefined is not a universal and effective computation that can 

be expressed in any programming language.  
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