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Abstract 

In the present time, there is a gradual increase in the demand for energy, especially green 

energy; therefore, significant advancements have occurred in the field of energy harvesting in 

recent years to meet the growing demand for portable, sustainable, and renewable energy 

sources. Corresponding gadgets are specifically engineered to capture and transform the 

surrounding energies into practical electrical energy. Using piezoelectric material, we are 

working to increase the energy output voltage from this material using different techniques. In 

this reported work, we synthesize the ZnO and Ca-doped ZnO (CaZ) powder with the help of 

the co-precipitation method calcined at 650o C. X-ray diffraction (XRD) confirmed the 

prepared ceramic powders' phase formation. The calcined ZnO and Ca-doped ZnO (CaZ) 

particles were mixed with PVDF to prepare flexible composite films of 5 wt. % with a thickness 

of ̴ 60 µm by drop cast method. Structural analysis of the fabricated flexible composite film 

was performed by XRD and Fourier Transform Infrared (FTIR) spectroscopy, which indicated 

the formation of the β- β-phase in the composite film. SEM images were used to analyze the 

composite film's morphology and structure. The fabricated devices' energy harvesting 

performance was measured with a shaker's help. Then, a voltage output is measured by making 

electrical connections with the flexible films. The voltage output is 3.76V, 18.9V, and 21.8 V, 

respectively, for PVDF, 5 wt. % of ZnO and CaZ fillers with PVDF can run various small 

electrical devices. 
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Introduction 

As humans develop in the global society, we need more and more energy to fulfill our 

requirements. The current energy problem, caused by a scarcity of fossil fuels, has prompted 

the Explore several renewable energy sources, including hydroelectric, wind, solar, and others. 

Mechanical vibration is an attractive source of ambient energy due to its convenient 

accessibility and compatibility with piezoelectric materials; it has the potential to convert 

mechanical stress energy into electrical energy. Following that, various efforts have been made 

to create ways to convert mechanical to electrical energy [1-5]. Several inorganic piezoelectric 

materials, including barium titanate (BaTiO3), zinc oxide (ZnO), and lead zirconia titanate 

(PZT) and others, have been extensively used in energy scavenging applications [6-10]. The 

first documented nanogenerator was an array of ZnO nanowires [11]. Later, other 

nanogenerators employing various additional piezo materials were reported to power small-

size electronic devices. Having piezoelectric properties, polymers, such as poly(vinylidene 

fluoride) (PVDF) and its derivatives, are well-suited for overcoming the drawbacks of ceramic-

based piezoelectric materials, particularly their susceptibility to breakage. These polymers are 

eco-friendly, compatible with living organisms, and easy to produce. The fluorine and 

hydrogen atoms in PVDF's repeating unit (-CH2-CF2-) form several polar and non-polar 

configurations, including α, β, γ, and δ phases [12].  Polar in nature, β-phase PVDF with all-

trans conformation (TTTT) has superior piezoelectric characteristics, making it ideal for energy 

harvesting applications [13-16]. Furthermore, the copolymerization approach has resulted in 

several PVDF copolymers with comparable piezoelectric characteristics. The substitution of a 

hydrogen atom with an additional fluorine atom results in steric hindrance and modifies the 

potential energy of the polymer chains, rendering it appropriate for exclusively trans 

conformation [17-18]. However, as we compared them to ceramic properties, polymers have 

lesser piezoelectric capabilities, demanding the introduction of specific piezoelectric particles. 

The significant piezoelectric coupling factor of ZnO nanostructure makes it a highly researched 

semiconducting material. Furthermore, their lack of toxicity and ability to interact well with 

living organisms make them extremely valuable in the majority of energy-harvesting systems. 

The simplicity of changing and adding external features further broadens their uses. Various 

attempts have been made to improve the piezoelectric efficiency of nanogenerators 

manufactured from diverse piezoelectric polymer composites [19-25]. 

Research has demonstrated that utilizing non-ferroelectric ZnO in conjunction with 

piezoelectric polymers enhances the performance of piezoelectric devices. This combination 
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produces a flexible nanogenerator with a larger electrical output [26-30]. Research has focused 

on increasing polymer or filler qualities by chain modifications or dopant ion addition to 

nanofiller to enhance performance. Various piezoelectric nanofillers have been mixed with 

PVDF copolymers and terpolymers, while dopant ions and molecules have been used to modify 

ZnO nanostructures. These modifications aim to enhance the performance of piezoelectric 

devices [31-34]. 

A unique piezoelectric energy harvesting device was created using a straightforward technique, 

mixing PVDF polymer with calcium ion-doped ZnO(CaZ) nanoparticles that had not been 

described before. Ca-doped ZnO particles synthesized using the co-precipitation technique 

were used as a ceramic filler in the polymer matrix. Several crystallographic and morphological 

investigations were conducted to confirm the integration of calcium (Ca) into the crystalline 

structure of zinc oxide (ZnO) in the generated nanofiller. The CaZ/PVDF composite film was 

deposited by drop casting a solution and used as a thin active layer in a piezoelectric energy 

harvesting device. 

Prior to manufacturing the ultimate device, an examination was conducted on the crystalline 

and morphological properties of the synthesized films. The piezoelectric performance of the 

films was evaluated in comparison to a pure PVDF film, and the underlying mechanism 

responsible for the enhanced performance of the films was also investigated. Ultimately, the 

sensing capability of the fabricated devices was assessed in the presence of fluctuating 

pressures. 

 

2.  Materials and Methodology 

2.1 Synthesis of CaZ filler: 

Zinc chloride and calcium chloride are utilized as precursors to synthesize stoichiometric Zn(1-

x)Ca(x)O (x = 0.05) nanoparticles using the co-precipitation approach, which has been 

previously employed in similar studies [35].  Zinc chloride and calcium chloride dissolved 

separately in de-ionized water at room temperature on a magnetic stirrer. The two solutions 

were then combined to form a homogeneous solution. After 1 hour of continuous stirring, a 0.1 

M NaOH (Sodium Hydroxide) solution was added slowly to the zinc and calcium chloride 

mixture. The precipitates were collected via centrifugation and then washed repeatedly with 

de-ionized water and ethanol to remove any residual chemicals. The precipitate was dehydrated 



International Journal of Applied and Behavioural Sciences (IJABS) 

 

Garima, & Bhukkal, S.          31 

 

in a hot air oven at a temperature of 70°C for an extended period of time and subsequently 

subjected to calcination at a temperature of 600°C for a duration of 2 hours in a furnace, 

resulting in the formation of Ca-doped ZnO particles. Zinc oxide particles were made using the 

same technique described above, excluding adding the calcium precursor calcium chloride. 

 

2.2 Synthesis of Ca-doped ZnO/PVDF composite film 

A precise amount of PVDF was dissolved in N’N’-dimethylformamide (DMF) and agitated 

using a magnetic stirrer at a temperature of 45 degrees Celsius for a duration of 2 hours in order 

to obtain a homogeneous and transparent solution. Subsequently, particles of Zn(1-0.05)Ca 0,05x)O 

were incorporated into the solution created earlier, with a concentration of 5wt. % relative to 

the polymer matrix. The mixture was then agitated for an additional 3 hours. Next, the evenly 

distributed solution was applied onto a pristine glass petri dish to create a composite film of 

Ca-doped ZnO/PVDF. The film was dried in a hot air oven at 80°C until the solvent had 

evaporated. 

 

3.  Material Characterisation 

The crystal structure of the Zn(1-0.05)Ca (0.05)O  particles and composite films were analysed 

using an X-ray diffractometer (PAN analytical X’pert PRO). The experiment involved 

exposing the sample to radiation with a wavelength of 1.5406 Å, over a range of 2θ angles 

from 120° to 80° for powder and 10o to 80o for composite films. The morphology of the 

CaZ/PVDF composite films was analysed using scanning electron microscopy (SEM) with a 

Zeiss EVO40 apparatus from JNU, India. The effect of CaZ particles on composite film's phase 

crystallization was further studied using a Fourier transform infrared spectrometer (FTIR, 

Thermo Scientific). 

 

4.  Results and Discussion. 

4.1 Analysing the structure and microscopic properties of CaZ ceramic powder. 
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Fig. 1. XRD Analysis of ZnO and CaZ ceramic powder 

Fig. 1 shows the powder X-ray diffraction patterns for both unmodified ZnO and Ca-doped 

ZnO (CaZ) particles. ZnO, a wideband semiconducting inorganic material, can exist in two 

primary crystalline forms: zinc wurtzite and zinc blende. The Wurtzite structure of ZnO, 

characterized by its two polar surfaces of Zn and O, generates a dipole moment and 

spontaneous polarization along the c-axis, which endows ZnO with piezoelectric properties 

[36]. These peaks align closely with the pure ZnO crystalline structure as referenced in the 

JCPDS database (card number: 361451), confirming the hexagonal wurtzite phase of ZnO [37]. 

The inclusion of calcium as a dopant does not significantly alter the diffraction pattern of the 

ZnO crystal structure. The absence of additional peaks suggests that Ca ions substitute Zn ions 

in the lattice points without disrupting the hexagonal wurtzite structure. However, the 

diffraction peak intensity for CaZ nanoparticles is lower than unmodified ZnO, indicating the 

successful substitution of Zn ions with Ca dopant ions [38]. 

4.2 Analysis of the structure of a composite film of PVDF and CaZ/PVDF 
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Fig. 2. The X-ray diffraction pattern of both pure PVDF and CaZ/PVDF composite film. 

Fig. 2 displays the X-ray diffraction (XRD) patterns for pure PVDF film and a CaZ/PVDF 

composite film. In the pure PVDF film, both crystalline and amorphous diffraction peaks can 

be observed, highlighting its polycrystalline nature. A notable diffraction peak at 20.4° is 

attributed to the (110/200) planes of the electroactive polar β phase of PVDF. Additionally, a 

broad peak at 18.0° indicates the presence of the non-polar α-phase, specifically reflecting the 

(020) plane. Peaks at 35° and 41° correspond to the polar β-phase, representing the (001) and 

(201) planes, respectively [39]. In the composite film, the increased intensity at the 20.0° peak 

and the decreased intensity at the 18.0° peak suggest a higher content of the polar β-phase. The 

comparison of the 35° peak between the composite and pure films indicates that the composite 

film's diffraction pattern combines the polymer and the filler. The significant peaks between 

30° and 36° in the CaZ nanofillers suggest that the pattern in this region of the composite film 

indicates the presence of CaZ within the polymer matrix. The presence of both the β-phase 

polymer peak and the CaZ filler peak after incorporating CaZ into the PVDF polymer suggests 

that the CaZ fillers minimally affect the polymer chain' crystallographic alignment [40]. 
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4.3. Morphological characterization of CaZ/PVDF composite films 

 

Fig. 3. Sem images at 20 µm and 50µm of Pure PVDF 3(a) and 3(b), 5 wt.% CaZ/PVDF 3(c) 

and 3(d) 

 

Fig. 4. EDS spectrum of the CaZ/PVDF composite film 

Fig. 3 shows SEM images of the top surfaces of pure PVDF and CaZ/PVDF composite films. 

The pure PVDF film exhibits a smooth and flat surface, whereas the CaZ/PVDF composite 

film has a distinct surface texture. The air/solution interface of the composite film displays 

numerous spherical features, likely due to the presence of CaZ fillers [41]. The white regions 
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in the SEM image of the composite film indicate gaps between these spherical areas, while the 

small dot-like structures are the evenly distributed CaZ nanofillers on the polymer matrix 

surface [42]. Fig. 4 presents the Energy-dispersive X-ray spectroscopy (EDS) spectra for the 

composite film with 5 wt. % CaZ, showing peaks corresponding to Ca and ZnO, confirming 

their presence within the PVDF film. 

4.4 Fourier transform-infrared (FTIR) spectroscopy studies. 

 

Fig. 5 Shows the FTIR spectra of pure PVDF film and a composite film of 5 wt.% CaZ ceramics 

in the PVDF matrix. 

FTIR research was conducted on both the pure and produced composite films to examine the 

impact of CaZ ceramic particles on the crystal structure of PVDF. The Fourier Transform 

Infrared (FTIR) spectra of a pure Polyvinylidene fluoride (PVDF) film and composite films 

made of CaZ and PVDF were obtained at ambient temperature. The spectra were recorded in 

the region of 600–1500 cm−1 and are shown in Fig. 5. The FTIR spectra indicate the presence 

of both α and β phases in all produced films. The peaks corresponding to the α and β phases 

are indicated in Fig 5. The FTIR data obtained was consistent with the XRD data, indicating 
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the presence of the β phase of PVDF in both the pure PVDF films and the CaZ/PVDF 

composite films. The absorption bands seen at 766 and 1400 cm−1 are identified as the 

distinctive peaks of the α phase of PVDF [43-46]. Conversely, the absorption bands observed 

at 838, 876, 1072 and 1170 cm−1 are identified as the distinctive peaks of the β phase of PVDF 

[47]. In addition, compared to the pure PVDF film, the absorption peaks corresponding to the 

β phase of PVDF were strengthened in all the CaZ/PVDF composite films. This suggests that 

the incorporation of CaZ ceramic powder in PVDF resulted in an improved crystallization of 

the β phase of PVDF. The β phase of PVDF plays a crucial role in enhancing the piezoelectric 

performance of the generator. 

5.  Piezoelectric properties of fabricated PEG devices. 

 

Fig. 6.  Voltage output of the (a) PVDF (b) ZnO/PVDF (c) 5 wt.% CaZ. 

Fig. 6(a), (b), and (c) display the voltage responses of three different devices were evaluated: 

one made of pure PVDF, a second incorporating ZnO/PVDF, and a third consisting of a 

CaZ/PVDF composite film. Testing was conducted without using a rectifier. The inclusion of 

CaZ fillers in the composite film significantly increased the voltage potential compared to both 

the pure PVDF and ZnO/PVDF devices. As shown in Fig. 6(d) and summarized in a table, the 

peak voltages of the composite film devices are highlighted over a short time span. The 
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generated voltage reached a maximum of 21.8 V for the CaZ/PVDF, 18.9 V for the ZnO/PVDF 

and 3.76 V for pure PVDF PEG. This voltage generation is due to the film's crystal structure 

deformation under applied stress, leading to the alignment of electric dipoles. 

6.  Conclusion 

We successfully synthesized CaZ powder and analysed it using XRD techniques. Additionally, 

composite films created through the solvent casting technique were examined with XRD and 

FTIR to investigate their crystalline properties. The results show that incorporating CaZ 

enhances the polar electroactive phase, leading to increased crystallinity in the fillers. The CaZ 

content within the PVDF matrix affects various device characteristics and improves 

piezoelectric performance. The voltage output of the PEG was measured by applying force to 

the film using a shaker, and the CaZ/PVDF PEG achieved a maximum voltage output of 21.8 

V 
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